Active Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates NMDA Receptor Mediated Postischemic Long-Term Potentiation (i-LTP) by Promoting the Interaction between CaMKII and NMDA Receptors in Ischemia

نویسندگان

  • Ning Wang
  • Linlin Chen
  • Nan Cheng
  • Jingyun Zhang
  • Tian Tian
  • Wei Lu
چکیده

Active calcium/calmodulin-dependent protein kinase II (CaMKII) has been reported to take a critical role in the induction of long-term potentiation (LTP). Changes in CaMKII activity were detected in various ischemia models. It is tempting to know whether and how CaMKII takes a role in NMDA receptor (NMDAR)-mediated postischemic long-term potentiation (NMDA i-LTP). Here, we monitored changes in NMDAR-mediated field excitatory postsynaptic potentials (NMDA fEPSPs) at different time points following ischemia onset in vitro oxygen and glucose deprivation (OGD) ischemia model. We found that 10 min OGD treatment induced significant i-LTP in NMDA fEPSPs, whereas shorter (3 min) or longer (25 min) OGD treatment failed to induce prominent NMDA i-LTP. CaMKII activity or CaMKII autophosphorylation displays a similar bifurcated trend at different time points following onset of ischemia both in vitro OGD or in vivo photothrombotic lesion (PT) models, suggesting a correlation of increased CaMKII activity or CaMKII autophosphorylation with NMDA i-LTP. Disturbing the association between CaMKII and GluN2B subunit of NMDARs with short cell-permeable peptides Tat-GluN2B reversed NMDA i-LTP induced by OGD treatment. The results provide support to a notion that increased interaction between NMDAR and CaMKII following ischemia-induced increased CaMKII activity and autophosphorylation is essential for induction of NMDA i-LTP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor.

The molecular basis of long-term potentiation (LTP), a long-lasting change in synaptic transmission, is of fundamental interest because of its implication in learning. Usually LTP depends on Ca2+ influx through postsynaptic N-methyl-D-aspartate (NMDA)-type glutamate receptors and subsequent activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII). For a molecular understanding of LTP ...

متن کامل

Uncoupling the D1-N-methyl-D-aspartate (NMDA) receptor complex promotes NMDA-dependent long-term potentiation and working memory.

BACKGROUND Although dopamine D1 receptors are involved in working memory, how D1 receptors contribute to this process remains unclear. Numerous studies have shown that D1 receptors have extensive functional interaction with N-methyl-D-aspartate (NMDA) receptor. Our group previously demonstrated that D1 receptors were able to regulate NMDA receptor functions through direct protein-protein intera...

متن کامل

Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor.

Activation and Thr286 autophosphorylation of calcium/calmodulindependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphory...

متن کامل

NMDA Receptor Subunit Composition Controls Synaptic Plasticity by Regulating Binding to CaMKII

Calcium entry through postsynaptic NMDA-Rs and subsequent activation of CaMKII trigger synaptic plasticity in many brain regions. Active CaMKII can bind to NMDA-Rs, but the physiological role of this interaction is not well understood. Here, we test if association between active CaMKII and synaptic NMDA-Rs is required for synaptic plasticity. Switching synaptic NR2B-containing NMDA-Rs that bind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014